A Grangeat-type half-scan algorithm for cone-beam CT.

نویسندگان

  • Seung Wook Lee
  • Ge Wang
چکیده

Modern CT and micro-CT scanners are rapidly moving from fan-beam toward cone-beam geometry. Half-scan CT algorithms are advantageous in terms of temporal resolution, and widely used in fan-beam and cone-beam geometry. While existing half-scan algorithms for cone-beam CT are in the Feldkamp framework, in this paper we compensate missing data explicitly in the Grangeat framework, and formulate a half-scan algorithm in the circular scanning case. The half-scan spans 180 degrees plus two cone angles that guarantee sufficient data for reconstruction of the midplane defined by the source trajectory. The smooth half-scan weighting functions are designed for the suppression of data inconsistency. Numerical simulation results are reported for verification of our formulas and programs. This Grangeat-type half-scan algorithm produces excellent image quality, without off-mid-plane artifacts associated with Feldkamp-type half-scan algorithms. The Grangeat-type half-scan algorithm seems promising for quantitative and dynamic biomedical applications of CT and micro-CT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grangeat-type helical half-scan computerized tomography algorithm for reconstruction of a short object.

Currently, cone-beam computerized tomography (CT) and micro-CT scanners are under rapid development for major biomedical applications. Half-scan cone-beam image reconstruction algorithms assume only part of a scanning turn, and are advantageous in terms of temporal resolution and image artifacts. While the existing half-scan cone-beam algorithms are in the Feldkamp framework, we have published ...

متن کامل

Usability assessment of cone beam computed tomography with a full-fan mode bowtie filter compared to that with a half-fan mode bowtie filter

Background: In intensity modulated radiation therapy, cone beam computed tomography (CT) has been used to evaluate patients prior to treatment. This study conducted a comparative evaluation of the image reconstruction ability of the clinically used half-fan bowtie filter and the full-fan bowtie filter. Materals and Methods: A CT simulation marker was inserted inside a human phantom, and the pel...

متن کامل

Practical Helical Cone Beam Algorithm for the Long Object Problem

Cone beam computed tomography (CT) based on nonplanar orbits has been an active area of research toward the goal of producing an exact volumetric reconstruction. To date, most reconstruction algorithms for non-planar orbits have been based on the theoretical framework of Tuy[1], Smith [2] and Grangeat[3]. Of all the investigated non-planar orbits, the helical scanning geometry is most promising...

متن کامل

Half-scan cone-beam CT fluoroscopy with multiple x-ray sources.

To develop volumetric micro-CT fluoroscopy for small animal imaging, we have proposed a cone-beam system with multiple x-ray sources. In this paper, we extend Parker's single-source half-scan weighting scheme to the case of an odd number of x-ray sources that are equiangularly distributed, and apply it for half-scan Feldkamp-type reconstruction in this unique geometry. In the numerical simulati...

متن کامل

Theoretical framework for a dynamic cone-beam reconstruction algorithm based on a dynamic particle model.

Dynamic cone-beam reconstruction algorithms are required to reconstruct three-dimensional (3D) image sequences on dynamic 3D CT combining multi-row two-dimensional (2D) detectors and sub-second scanners. The speed-up of the rotating gantry allows one to improve the temporal resolution of the image sequence, but at the same time, it implies increase in the dose delivered during a given time peri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 2003